Natural Language Processing (NLP)

Overview

Natural language processing (NLP) refers to the branch of computer science — and more specifically, the branch of artificial intelligence or AI — concerned with giving computers the ability to understand the text and spoken words in much the same way human beings can.

Challenges

Everything we express (either verbally or in written) carries huge amounts of information. The topic we choose, our tone, our selection of words, everything adds some type of information that can be interpreted and value extracted from it. In theory, we can understand and even predict human behavior using that information.

Use Cases

  1. Disease Prediction: NLP enables the recognition and prediction of diseases based on electronic health records and patient’s own speech. This capability is being explored in health conditions that go from cardiovascular diseases to depression and even schizophrenia. For example, Amazon Comprehend Medical is a service that uses NLP to extract disease conditions, medications, and treatment outcomes from patient notes, clinical trial reports, and other electronic health records.
  2. Virtual assistants and chatbots: Virtual assistants such as Google Assistant, Apple’s Siri, and Amazon’s Alexa use speech recognition to recognize patterns in voice commands and natural language generation to respond with appropriate action or helpful comments. Chatbots perform the same magic in response to typed text entries. The best of these also learn to recognize contextual clues about human requests and use them to provide even better responses or options over time. The next enhancement for these applications is question answering, the ability to respond to our questions — anticipated or not — with relevant and helpful answers in their own words.
  3. Sentiment analysis: NLP has become an essential business tool for uncovering hidden data insights from social media channels. Sentiment analysis can analyze language used in social media posts, responses, reviews, and more to extract attitudes and emotions in response to products, promotions, and events–information companies can use in product designs, advertising campaigns, and more.
  4. Legal Assistance: LegalMation (Powered by IBM Watson NLP technology) developed a platform to automate routine litigation tasks and help legal teams save time, drive down costs and shift strategic focus.
  5. Stock Market: Having an insight into what is happening and what people are talking about can be very valuable to financial traders. NLP is being used to track news, reports, comments about possible mergers between companies, everything can be then incorporated into a trading algorithm to generate massive profits. Remember: buy the rumor, sell the news.
  6. Healthcare Industry: Companies like Winterlight Labs are making huge improvements in the treatment of Alzheimer’s disease by monitoring cognitive impairment through speech and they can also support clinical trials and studies for a wide range of central nervous system disorders. Following a similar approach, Stanford University developed Woebot, a chatbot therapist with the aim of helping people with anxiety and other disorders.

Future of NLP

Student | Full-Stack Developer | Android Developer | Cloud Architect